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ON PERIODIC SOLUTIONS FOR NESTED POLYGON PLANAR
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Abstract. In this paper we study some necessary conditions and sufficient condi-
tions for the nested periodic polygon solutions of planar 2IN+1-body problem, in which
N-body lie at the vertex of one regular polygon, other N-body lie at the vertex of
another regular polygon with a running angle, and 2N+1th body lies at their geome-
trical center (origin) of 2/N-body.
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1. Main results

This paper uses the same notations as the paper [6]. For n > 2, the equations of
motion of the planar n-body problem ([1], [2], [3], [5], [6]) can be written in the
form

.. Rk~ &j

Bo= = m (1.1)
j=1 j|zk_zj’3’
J#k
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where z;, is the complex coordinate of the kth mass m; in an inertial coordinate
system.
Let py denote the N complex kth roots of unity; i.e.,

pr = exp(2nlk/N), (1.2)

hereafter I = y/—1. This equation will also serve to define p; for any number k.
We assume that the mass my(k = 1,..., N) locates at the vertex py of a regular
polygon inscribed on the unit circle, and my, (k= 1,..., N) locates at

Pe = apy (1.3)

where a > 0, 0 < 0 < 27, and a # 1 when 6 = 0 or 27, and my locates at the geo-
metrical center(which is taken as the coordinate origin) of py and gy, (k = 1,..., N).
Then the center of masses my, ..., my; M1, ..., My, Mg is

20 = E](mjp]j\;_ m;p;) (1.4)
where M = 37;(m;+m;)+my. In (1.4) and throughout this paper, unless specially
restricted, all indices and summations will range from 1 to N. The functions
describing their rotation about 2z, with angular velocity w are then given by

zk(t) = (pr — 20) exp({wt), k=1,..,N (1.5)
Z(t) = (appe’® — 2) exp(lwt), k=1,..,N (1.6)
Zo(t) = (0— zp)exp({wt). (1.7)

Then the equations of motion of the planar 2N-body problem can be written as
the following form,

zk—ZmJ

+ij 5 A (1.8)
7k %

IZJ — % |3 — 2’

Zmﬂp«j—z g +§km]|z]—zkl3 (1.9)
and
%= ij ’ZJ S+ ij ‘Zj - ;0‘3 (1.10)
R. Moeckel and C. Simo ([5]) proved the following result:
Theorem (Moeckel-Simo). If 0=0,mo=0 and mi=---=my, My=---=my,
then for every mass ratio b = % # 1, there are exactly two planar central

1
configurations consisting of two nested reqular N-gons. For one of these, the ratio
of the sizes of the two polygons is less than 1, and for the other it is greater than 1.
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Zhang and Zhou also discussed periodic solutions for planar 2/N-body in [8], [9].
In this paper, we continue to study the inverse problem of the theorem (Moeckel-
Simo) for 2N+1-body problem and the following results are established.

Theorem 1. For N > 2, my, mg, mg > 0, the functions zx(t), Zx(t) and Zo(t) with
w given by (1.5)—(1.7) are solutions of the 2N+1-body problem (1.8)—(1.10), then

o ()5 F)o-n

j#N 11— p;l?
2
D | > N (1 —ap;e')
k j |1 —apj619|3 M ’
W2
+mo - N <1 - M) =0 (1.11)
1 WQ) 16
mp —— — — | (ae’’ — p;
(Zk: )zj: <|a€”’—Pj!3 M ( )
+ (Z ﬁlk> > (1 - w2> (a —ap;)e’’
k jzn \la—ap;|* M ’
1 w? "
+m0 . N 73 — M ae = 0, (112)
a
(il)) my =mg=---=my and My =My = -+- = My. (1.13)

Theorem 2. For N > 2, the functions zx(t), Zx(t) and Zy(t) with w given by
(1.5)—(1.7) are solutions of the 2N+1-body problem (1.8)—(1.10), if and only if the
followings hold

(i) mi=mo=---=my:=m and m; =My =+ =My = m, (1.14)
w? 1 1 apje
i = = 1.15
(i) 7 M N+bN+c ;\,H— | Z|1—ap619|3+c (1.15)
s C Ty s — 0 pai s + (ca® — )™ (1.16)
B I = T |
N Tp,P J Ti=ap; TP

where b = m/m,c = mg/m.

Theorem 3. When 6 = 0, for the given mass ratio: b = m/m # 1, and the
arbitrary mass ratio: ¢ = mg/m, there exists two unique solutions in (1.8)—(1.10)
satisfying (1.14) and one such that 0 < a < 1, the other one such that a > 1.

When 0 = w/N, for b > 1 there exists a unique solution in (1.8)—(1.10)
satisfying (1.14) and 0 < a < 1, and for 1 > b > 0 there exists a unique solution
such that a > 1.
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T
Remark. It seems that only 6§ = 0 or N w? and a are positive real numbers,
but the proof seems very difficult.

Corollary 1. For N > 2, 0 = 7/N,a = 1, if the functions z(t), Zx(t) and Zy(t)
with w given by (1.5)—(1.7) are solutions of the 2N+1-body problem (1.8)—(1.10),
then

(1) bzl, i.e.,m1:m2:~--:mN:ﬁ11:mQZ---:mN, (]_]_7)
w? 1 1 mj

ii = — = - csc| — | +c| . 1.18

A T 43% <2N) (118)

It is the extension of Theorem 1 (Perko-Walter) [6].

Corollary 2. Under the above assumptions,

(i) if N = 2,0 = 0,a > 1, z(t), Zk(t), 20(t) with w given by (1.5)—(1.7) are
solutions of the 2 + 2 + 1-body problems (1.8)—(1.10), if and only If

mip = mMmg, M1 = My,

w? 1 1 4ab
w' L 1.19
M 2(1—|—b)+cl4 (a2—1)2+01 (1.19)
and
4 3_1 4_2 2 1 7_2 5 4 3 _ 2
b c(a )(a a®+1)+ (a a’> —8a* + a’ — 8a?) (1.20)

17a* — 2a2 + 1 ’
hereafter b = my/my,c = mg/m;.

(ii)) If N =2,0=0,0 < a < 1,z(t), Z(t), 20(t) with w given by (1.5)—(1.7) are
solutions of the 2 + 2 4 1-body problems (1.8)—(1.10), if and only if

my = Mg, M1 = Mgy,

w? 1 1 2b(a2+1)
w' 2+l 1.21
M 201+b)teld @1 ¢ (1.21)

and

b (a” —2a° + 17a®) + 4c(a® — 1) (a* — 2a* + 1)' (1.22)

—8a® + a* — 8a3 — 2a% + 1

(iii) For N =2 and 0 = g, b,c and a has the following relationship
2—2 -9 2 1 —3/2 o -3

b= (a*+ 1)+ c—ca (123)

272q73 — 2(a? +1)3/2
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Remark. When my = 0, Corollary 2 is conclusions of MacMillan-Bartky [4] in
some sense.

Corollary 3. Under the above assumptions,

(i) If N = 3,0 = 0,a > 1, z(t), Zx(t), 20(t) with w given by (1.5)—(1.7) are
solutions of the 3 + 3 4+ 1-body problems (1.8)—(1.10), if and only if

mp =My = Mg, My = Mz = Mg,

w? 1 V3 b(2 + a) b
M — m [ + - —|—C‘| (1.24)

3 (14a+a?)? (a—1)
a’ 2a 1 + L —aBE—caB—l—c
(1+a+a?): (a—1) 3
a3 ( 2a+1 - 1 2) . \/331
(1 +a+ a2)5 (a—1) 3

(i) If N =3,0=0,0 < a <1,z(t), 2(t), 2(t) with w given by (1.5)—(1.7) are
solutions of the 3 4+ 3 + 1-body problems (1.8)—(1.10), if and only if

and

b= (1.25)

mp = mg = Mg, My = Mz = M3,

w1 V3B b(2 + a) b .
M3(1+b)+c[3 +(1+a+a2)%+(a—1)2+ ] (1.26)
and
[a2< 2a + 1 B 1 )-a?’\/g—ca?’—i—c}
p= L rota)r - 9 S a

3 2a+1 1 V3
[a <(1+a+a2)§ + (a—1)2> 3 ]

Corollary 4. Under the above assumptions,

(i) If N = 4,0 = 0,a > 1, z(t), 2x(t), Z20(t) with w given by (1.5)—(1.7) are
solutions of the 4 + 4 + 1-body problems (1.8)—(1.10), if and only if

mlz...:m4’m1:...:m4’
w? 1 1 V2 2a 4a
i SR BT S — 1.2
M 4(1+b)+cl4Jr 3 T ((1+a2)‘3 (a2—1)2>+01 (1.28)

and

) 2

1+ a?) (a? —1)?

(+5) (e

(1.29)
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(i) If N =4,0=0,0 < a <1,z(t),2(t), 2(t) withw given by (1.5)—(1.7) are
solutions of the 4 + 4 4+ 1-body problems (1.8)—(1.10), if and only if

My = =My, Ty = - = 1y,
2 1 1 2 2 2(a% +1
e S *+£+b ¢ 5 — @+ 1) +c (1.30)
M 41 +b)+cl|4 2 (1+a22 (a®—1)2

and

- LLB (i + ?) —a’ <(1 522)3 - (a24_a1)2> + ca® —01.

1.31
LoV2) s 2, 2’ +1) (1.31)
-4+ =] —a
4 2 (1+a2)s  (a®—1)
2. Some lemmas
Definition 2.1. ([3]) If N x N matrix A = (a; ;) satisfies
Qi = Gi-15-1, 1 <1, j<N, (2.1)

where we assume a;p = a; v and ap; = ay;, then we call A is a circular matrix.

Lemma 2.1. ([3])

(i) If A and B are N x N circular matrices, for any numbers o and 3, then
A+ B,A— B,AB,aA + 3B are also circular matrices, and AB = BA.

(i) Let A= (a;j) be a N x N circular matriz, then the eigenvalues X\, and the
eigenvectors vy of A are

A(A) = Z al,jpija (2.2)
J

U = (kaflapiflv ---7/){5:11)? (2-3)

(iii) Let A, B be circular matrices, \p(A), A\e(B) are eigenvalues of A, B. Then
the eigenvalues of A+ B,A— B,A-DB are

Ae(A) + Au(B), Ae(A) = Ak(B), Ak(A) - A(B).
It is clear that

Lemma 2.2. If A = (a;;) is a N x N circular matrices, and AX = 0, where
X =(z1,.,xn)’, ;>0 (i=1,...,N), then
ajj+---+ay; =0, 1<j<N,

: (2.4)
a1 +--+an=0 1<i<N.

Lemma 2.3. Let A, B be N x N Hermite circular matrices, then A+ B, A — B,

AB, aA+ (B (o, € R) are also Hermite circular matrices.

Lemma 2.4. Let A is a Hermite circular matrix, then the eigenvalues of A are
real number.
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(i) Whenn =2m+ 1(m > 1), A can be denoted with
A= A2m+1 = cz'r(a, bl, bQ, ceey bm, Bm, ...,BQ, 61),

where a € R and by is a conjugate complex number of by. It has eigenvalues

Ao =a+ 22Rebl (2.5)
=1
s 2kml 2kml
= 2 -1 ) 1<k <2m. 2.
A =a+ Z Reblcos2m 1 mblsanm 1 <k<2m. (2.6)

=1
(ii) When n =2m(m > 1), A can be denoted with
A — A2m - CiT(CL, b17 b27 teey bm—17 bm7 [_)m—17 ceey 627 617 )

It has eigenvalues

m—1
Mo =a+2> Reb + by, (2.7)
=1
m—1
A =a—+2Y (=1)'Reb; + (—1)"bpm, (2.8)
=1
m—1 ) 9
A = a+ 2 Z [Reblcos 2/£7rl — I'mbysin kﬁl] + (=1)*b,,
m m

(2.9)

=1
1<k<2m-—1, k#m.
Proof. This lemma can be simply proved by the properties of the circular matrix
and the Hermite matrix.
Lemma 2.5. The complex subspace L of CN generated by X; = (1,1,...,1),
2l
Xo = (1,p,....pN71), where N = 2k > 2 <p = exp ;) , and the complex sub-

space L generated by Xy, Xo and X5 = (1,p* D . p0V=DEDY yhere N =
2k +1 > 3, are all contains no real vectors other than the multiples of (1,1,...;1).

Proof. After some algebraic computation, it can be also simply proved.

1
Lemma 2.6. ([5]) Let A = 1 > esc(mj/N), then A(N) has the following asymp-

J#EN
totic expansion for N large:
N 2N (—1)k(22%-1 — 1)BZ n2%-1 1
A(N) ~ — ( [ ) , 2.10
(N) ~ o (7 +log— k§>jo @ (a0 e (2.10)

where v stands for the Fuler-Mascheroni constant and Bsy, stands for the Bernoull
numbers.
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o
Lemma 2.7. Let ®)(z) = Z d/\,where A>0,dj =1+ 2° — 2xcos (;\T]] B ]7\;)’

then, for 0 < z < 1, ®y(x ) and all of its any order derivatives are positive.

2rj _ w
CcoSs ( N N)

Moreover, the same is thus for Vy(x) = Z I
J

J
Proof. The conclusion and proof are similar to [5].

3. The proof of the main results

For two nested regular polygons, we define

pr = exp(2nlk/N), (3.1)
pr = aexp(2rIk/N)el?, (3.2)
2 = Y (mip; +m;p;) /M, (3.3)

where
M = Z(mj —+ mj) + mo, (34)
zk(t) = (pr — 20) exp(Iwt), kE=1,..,N, (3.5)
Ze(t) = (apre’® — 2) exp(Iwt), k=1,..,N, (3.6)

and

Zo(t) = (0 — 2zp) exp({wt). (3.7)

Proof of Theorem 1. (3.1)—(3.7) imply that the z,(¢) , Zx(¢) and Z(¢) are the
solutions of (1.8) to (1.10) if and only if

(pr — z0)w? exp (Iwt)

pr—0 (3.8)
m; + - +m exp ([wt),
(% T P S = 0|pk|3> (Jut)
(pr — z0)w? exp (Iwt)
P — 0 (3.9)
— + + my—— exp ({wt)
(Z it SR |pk|3)

and
(0 — zp)w? exp (]wt)

(Z m] s+ Z 2 ) exp ({wt), (3.10)

J#k ]‘
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or if and only if

>y (1 - CX;) (pr = pj)

3
2 \lpr — il
’ ' , , (3.11)
+> M, e = ) (=) o (1= 2 ) =0
= I\l =2 M ! M ’
S (2= ) -0
= I\l —pil? M SR
| ) . ) (3.12)
e
7\l —plP M ad M
and
zow” = | Y m; 3+Z == (3.13)
2, 7
Multiplying both sides by py_j in (3.11), (3.12), noting that |p, — pj| =
okl|1 = pj—k] = |1 = pj—i| and using pr = apye’’, we have
1 w2>
m (e = S (=)
j%l:c J(\l—ﬂjk\g M ’
: L . (3.14)
n; —— ) (1 —ap;_xe"’ 1-=>)=0
+Zj:mj <|1—apj_k619|3’ M>( apj-re’”) + mo( M> )
1 w? 70
>_m; (W,—M> (ae™ = pji)
j ik
] 2 y oW, 3.15)
il = —ap._ — = =0
+§€mj (\a—apj_kF’ M) (@ —apj_y)e +m0(a3 M)ae
and

(ijl |3+Z T |3). (3.16)

J#k
Notice that every step from (3.8) to (3.16) can be conversed respectively, firstly
we discuss (3.14)—(3.16). Now define the N x N circular matrices A = [ay],
B = [by;], C = [ck ], D = [dy ] as follows:

a/k,] = 07 fOl“ k - j,
1 w? .
wi = ([pp ) 0o ke @
1 w?
b — s w 19 _ , 3.18
k. (’aele — pjik‘g M) (ae p] k)7 ( )

1 w?
.= — ) (1 = ap;_e'?), 3.19
s = ([ 37) 0 - e (319
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dp; =0, for k=,
d ! o ( )el® for k£ (3.20)
=l——— ) (a—ap;_p)e r .
k‘,j |a/—a/pj_k|3 M p] k j?
I = (1,.,07, (3.21)
2
wr -
EF = (1-—)-1 3.22
1 W -
F = a(=->) 1 3.23
ae(~ = 2) (323
Then (3.14) and (3.15) hold if and only if the matrix equation
my
A c B\
( B D F ) Tf‘Ll =0 (3.24)
my
myo
has a positive solution.
Let
m = (my,...my)",m = (M, .., mx)", (3.25)
then (3.24) is equivalent to
A+ Cm + Emg = 0, (3.26)
Bty + D+ Fmg = 0. (3.27)

Notice that A, B, C, D are N x N circular matrices, with the properties of circular
matrix we know they must have positive real eigenvector 1. Each of (3.26), (3.27)
left multiplies 17 = (1,1, ..., 1), there are

(55 (5 0

i#N

+ < k mk> S <|11 - L;;) (1—ap;e’”) (3.28)

= \[1— ap,cl??

and
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The conclusion (i) of Theorem 1 is proved.

(ii) By (3.26) and (3.27) we have

o [ w? il W\ - =
(AD — CB)m + myg 1_M D — ae iy Cl1=0, (3.30)

- [ w? 1w\ |- =
(CB — AD)m + my (1 — M) B — ae" <3 — M) AlT=0. (3.31)
a
From Lemma 2.1 we see that
w? w1l W w? w1l W
<1—M>D—Cl€ g—M C, 1—M B—ae E_M A

and AD — CB are circular matrices, we know they must have positive real eigen-
vector 1. Using the properties of circular matrix, (3.30), (3.31) can be written as

(AD —CB) -1 +ay -1 =0, (3.32)
(CB—AD) -1 +ay-1=0, (3.33)
where ) )
- w 1w >
al-lzmoKl—M)D—aew (ai”_M> O] -1, (3.34)
- w? 1 w? -
ay-1=mg [(1—M>B—aew <a3—M> A] -1, (3.35)
w2> ( 1 w2> 10
ap = my - — —— — — | (a —apj)e (3.36)
[( M) i \la—ap;P M !
1 w? 1 w?
16 16
— -z 1 — ap.
. <a3 M>;<\1—ap 1P M>( " )]’
w? 1 w? 10

From (3.28), (3.29), we have

o Z my + o ka =0. (3.38)
k k

a. If a3 =0, then ap =0 and

(AD — CB) -m =0, (3.39)
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(AD — CB) -m = 0. (3.40)

(3.39), (3.40) must have positive real solutions, i.e., the kernel K of circular matrix
AD — CB has positive vector(s).
By Lemmas 2.1, 2.2 we have the eigenvalue

M(AD — CB) = \(AD) — M(CB) = Mu(A)Me(D) — Me(C)Ne(B).  (3.41)

Hence,
M(AD —CB) =0 (3.42)

for some 1 < k < N if and only if

Ae(A)A(D) = A(B)Ak(C) (3.43)

1 w? 1 w? 70
. N<‘ _pj|3 _M> (1_pj> Z <|a_apj|3 _M> (a_apj>€

J#EN

1
1 w? 1 w?
_ = Z \(1=ap.e!? - = 9__
;<|1—apjew\3 T (D o B o

; el —p; |2

(3.44)

by (3.36), (3.37), we see \{(AD — CB) =0 and ¢, = (1,1,...,1)T € K. We know
A,B,C,D and AD — CB are all Hermite matrices when 6 = 0(a # 1), % In
this case, by Lemma 2.4 ; 2.5 and 7], after many complex calculations it implies

that the kernel K C L or C L only contains such positive vectors as multiples of
vy = (1,1,...,1)T. In a general way we shall obtain similar conclusion. Hence,

mi=mg=---=MmMy:=m m >0, (3.45)
b. If ay # 0 then ay # 0. From (3.32), (3.33), (3.38), we get

(CB — AD) KZ mk> m — (zkj mk> m] =0 (3.47)

(Z mk> m— (zk: mk> m =0, (3.48)

then 1m; = bm;, where b = > 1,/ > my. Substitute it into (3.26) and (3.27).
k k
Similar to the proof in a, we also have (3.45) and (3.46).

) (zkj mk> m— (zk: mk> m#0, (3.49)

let G = CB — AD = (g;;), which is nonzero circular matrix, by Lemma 2.1 and
2.2, we have Z Gij = Z gi; = 0 and G has eigenvalue 0. Using the properties of
j i
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circular matrix, we have (AD — CB)I = 0 or 17(AD — CB) = 07. Let 17 left
multiplies (3.32) and (3.33) respectively, we get oy = ap = 0, which contradicts
the supposition. So (3.48) holds. Hence, Theorem 1 is accomplished.

Proof of Theorem 2.

Proof of the Necessary. From Theorem 1, (1.14) holds. We only prove (1.15),
(1.16).
Let m = bm, mg = cm, from (3.28), (3.29), there are

1 w?
L;V <|1 —pi* M) (=)

y ) g (3.50)
% (1= ans 11— =
03 (g ~37) 0o e (1 57) =0

w’ 16
4o |
(3.51

+b ) e (a—ap;)e’| +c 1« ael” =0
oyt \a—apJP M P ad M -
We know

(1 py) = N, (3.52)

J
> b(1 — apje’®) = bN, (3.53)
> (ae" — p;) = aNe™, (3.54)

J
> b(ae™ — ap;) = abNe'’. (3.55)
J
By (3.50) and (3.51) there are
w? 10
27 1221 =p) +bZ(1 —ap;e’”) + ¢
J . (3.56)
LT p —apje’
= +b) ———— +c,
P A =
w? 10 16 16
i Z(ae —p;) + bZ(a —ap;)e’’ + cae

J J (3.57)

i C
= Z |aef‘9 + b Z j|3 + @6107

jZn la—ap;
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and we have

w? 1 1 — apje
T M N +bN +c¢ Z|1— ]|3+ Z|1 ap619|3+c ’ (3:58)
w? 1 elf— j c
Y +b Pi_gtoy € 10| 3.59
TN ael®(N+bN+c) Z |CL€]9 pJ|3 g;v |a ap]\?’e +a26 (3:59)
Then
1 ap
10 j
; (%u— o Zu—ap eww“)
J (3.60)
c
5+ *+ e,
- e e
and that ) 1o
s _ 2 TN s — T e T (ca — e (3.61)
B e0(3. “apy gy Lmemel ’ ‘
J#N Iafapjl3 J 1—ap;el?3
ie. - o_,
a3y ‘17;]'3 a*y; m + (ca® — c)el?

b= : . (3.62)

ap.elf
(Eian il — @ X o)
Namely (1.15) and (1.16) hold.

The proof of the Sufficiency. For N > 2, the functions zx(t), Zx(¢t) and Zy(t)
with w given by (1.5) to (1.7) are solutions of the 2N+1-body problem (1.8)—
(1.10), if and only if (3.8) to (3.10), or (3.11) to (3.13) have positive solutions.
Let

my=mg=---=my:=m m > 0, (3.63)

My =Ty = =y =1 1> 0, (3.64)
where m = bm, mg = cm, then (3.13) holds, (3.11)—(3.12) or (3.14)—(3.15) are
equivalence to (3.56) and (3.57). From the process of the necessary proof for

theorem 2, we know that (3.56) and (3.57) are equivalence to (3.58) and (3.62),
i.e. equivalence to (1.15)—(1.16). Hence the proof of the sufficiency is finished.

Proof of Theorem 3. Under the assumption of the Theorem 3, we know that the
uniqueness of the periodic solution (1.5) to (1.7) or (1.8) to (1.10) is equivalence
to that (1.15)—(1.16) or (3.58), (3.59) have a unique positive solution for 0 < a < 1
or a > 1. We only prove the case of § = 7/N. Obviously, when § = w/N the right
sides of (3.58)—(3.59) are positive. So the problem is that the following equation
has a positive solution "a” (0 < a < 1 or a > 1) for given positive numbers b, c.

1—p; 1—6Lp]'61%
a —a+tbY —————=—+c
(J;Vu—pjws Zu—ap-efwr?*

—Z s bZ

]a—pe ~| oyl ap] a

(3.65)
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Let a =z,

f(x):x(ZH_ —i—bzxp]—i-c)

For? 1= apse 5
N T —xp; c
S
@ = pe %P SR e —apf @
We need to prove f(z) has a unique zero for 0 < x < 1 or for z > 1. Let

2 _ 2 T o
dy =142z — 2xcosN(2j - 1),

1
O‘(x) = z ﬁv
i Y
cosT (25 — 1)
j j
2! Tj
1(2 csce (N) + 1) , when N is even
B 1—p; Jj=1
P I
J#EN Pj 2
1 )
3 csc (N) , when N is odd
j=1
Then
lim f(z) = —oco
. 1-— pi 1 P el%
lim f(z) = I+ !
ST = T F T 2 = e
_Z 1—pje '™ _ Z 1 —p;
] 1 —pje %3 j;éNll_pJ|3
1—pje'x 1—p,
=(b-1) +Z£ - —
;H_pje N[ j;éN‘l_ij
But
N
1 27 Tj o
- QZ csc ( — ) +1|, when N is even
1—pje % 4\ = N 2N
N=2_ 75  —1=3 —
v 1—pse” N3 1= Ty w
— csc ( — ) , when N is odd.
253 N 2N

Since, when N > 2 is even

1—pje's L —pj
%: Btk 2:|1“Pj|3

1= pje J#N
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(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)
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and when N > 2 is odd, also

=

1—pe'w 1—p;
D e = 1) DR Tt

j 1 —pje” '~ j;ﬁN‘l_ij)

) N1 ' _ (3.75)
_ ' TN m -
_2;{CSC<N ZN) CSC<N)]+4>O
Hence, when b > 1, we have
lir{{ f(z) > 0. (3.76)

Obviously f(x) is a continue function for 0 < x < 1. Thus, to prove the existence
of unique zero of f(x), it suffices to show that f(z) is increasing. Now f(z) can
be written as follow:

flx) = (az — ;) E+br(a(z) —xf(x)) + (B(x) — za(x)) + ¢ (:c - x12> . (3.77)
Let ]
P@) =3 - (3.78)
It follows from the definitions that
®(z) = (1 + 2*)a(x) — 226(x), (3.79)
and it implies
o(z) — 56(x) = alz) + 3(8(x) — a(z)). (3.80)
Since
ij; = a(x) — zf(x), (3.81)
then, also f(x) can be written as
f(z) = (:p - ;) £+ brd(z)+ (1 + bxg)fli +c <$ - ;) . (3.82)

From Lemma 2.3, the first and the final terms are clearly increasing. Using Lemma

)

2.4 and its proof, we know ®(x), Ir themselves and their derivatives are positive
x

for 0 < x < 1. But

d®)’ d® d*P
Nl a® 2 &P
lbxfb(:z:) + (1+bx )dx] b®(z) 4 3bx ot (1+bx )dxz , (3.83)
SO /
br®(z) + (1 + bz )% >0, for0<z<l. (3.84)

Hence, the other two terms are increasing too for 0 < z < 1, i.e. f(z) =0 has a
unique solution for 0 < x < 1 when b > 1.
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Let the solution of f(x)=0 for 0 < 2 < 118 Zpropiem(b) 1= 2,(b),0 < z,(b) < 1.
For the case of x > 1: we don’t directly discuss the equation f(x) = 0. Similarly
we have a corresponding equation. By the symmetry of the problem, we have the

Remark. It implies for b > 1, then 0 < a < 1; for 0 < b < 1, then a > 1; and for
b=1,0=mn/N, then a = 1.

solution Zpropiem (b) := Zp(b) s.t. T,(b) = > 1.

Proof of Corollary 1. By Theorem 2, we easily prove Corollary 1.

Proof of Corollary 2. We only prove (iii), when N =2, § = 7/2,

aBel? TP 2 ae’’ — R 3 19
> E + (ca” — c)e
EN |1—pjl3 |ae® — p;[?

2al al — 1 al +1

R (a®+ 132 (a®+1)32
2al 2al 3

8 - (a2+1)3/2)+(0(l —C)]

1 1

_ 3 3
—2&](8—(a2+1)3/2>+(ca —C)]

(3.85)

and
1-—

(3

j#N |1 - p]‘g

o (1+1 s 1—al 1—a(-1)1 ‘
_I<23_“ (]1—a[|3+ |1—a(—1)fy3>> (3.86)

1 1
=2a°1 — |-
¢ <8a3 (a® + 1)3/2>

3,10 1—pj a2 3 160
a’e'’ YN TopF Yy ‘ae,g p |3 + (ca® —c)e
10 1—p; a3 1—ap;el?
iy o — 0 i ayer)
272 —2(a®>+ 1)+ c—ca™?
272473 — 2(a? +1)73/2

— & apje’
Z]l—a )

pj eIG|3

So

(3.87)

We omit other proofs.
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