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ON PERIODIC SOLUTIONS FOR NESTED POLYGON PLANAR
2N+1-BODY PROBLEMS WITH ARBITRARY MASSES1
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Abstract. In this paper we study some necessary conditions and sufficient condi-
tions for the nested periodic polygon solutions of planar 2N+1-body problem, in which
N -body lie at the vertex of one regular polygon, other N -body lie at the vertex of
another regular polygon with a running angle, and 2N+1th body lies at their geome-
trical center (origin) of 2N -body.
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1. Main results

This paper uses the same notations as the paper [6]. For n ≥ 2, the equations of
motion of the planar n-body problem ([1], [2], [3], [5], [6]) can be written in the
form

z̈k = −
n∑

j=1
j 6=k

mj
zk − zj

|zk − zj|3 , (1.1)

1This work was partially supported by NSF of China, KJF of CQEC(KJ1111xx), KJF of
CQSXXYYB.

2Corresponding author. E-mail address: liu xf666@163.com (X.F. Liu).
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where zk is the complex coordinate of the kth mass mk in an inertial coordinate
system.

Let ρk denote the N complex kth roots of unity; i.e.,

ρk = exp(2πIk/N), (1.2)

hereafter I =
√−1. This equation will also serve to define ρk for any number k.

We assume that the mass mk(k = 1, ..., N) locates at the vertex ρk of a regular
polygon inscribed on the unit circle, and m̃k (k = 1, ..., N) locates at

ρ̃k = aρk (1.3)

where a > 0, 0 ≤ θ ≤ 2π, and a 6= 1 when θ = 0 or 2π, and m0 locates at the geo-
metrical center(which is taken as the coordinate origin) of ρk and ρ̃k (k = 1, ..., N).
Then the center of masses m1, ..., mN ; m̃1, ..., m̃N ,m0 is

z0 =

∑
j(mjρj + m̃j ρ̃j)

M
(1.4)

where M =
∑

j(mj+m̃j)+m0. In (1.4) and throughout this paper, unless specially
restricted, all indices and summations will range from 1 to N . The functions
describing their rotation about z0 with angular velocity ω are then given by

zk(t) = (ρk − z0) exp(Iωt), k = 1, ..., N (1.5)

z̃k(t) = (aρke
Iθ − z0) exp(Iωt), k = 1, ..., N (1.6)

z̃0(t) = (0− z0) exp(Iωt). (1.7)

Then the equations of motion of the planar 2N -body problem can be written as
the following form,

z̈k =
∑

j 6=k

mj
zj − zk

|zj − zk|3 +
∑

j

m̃j
z̃j − zk

|z̃j − zk|3 , (1.8)

¨̃zk =
∑

j

mj
zj − z̃k

|zj − z̃k|3 +
∑

j 6=k

m̃j
z̃j − z̃k

|z̃j − z̃k|3 , (1.9)

and

¨̃z0 =
∑

j

mj
zj − z̃0

|zj − z̃0|3 +
∑

j

m̃j
z̃j − z̃0

|z̃j − z̃0|3 . (1.10)

R. Moeckel and C. Simo ([5]) proved the following result:

Theorem (Moeckel-Simo). If θ=0,m0=0 and m1= · · ·=mN , m̃1= · · ·=m̃N ,

then for every mass ratio b =
m̃1

m1

6= 1, there are exactly two planar central

configurations consisting of two nested regular N-gons. For one of these, the ratio
of the sizes of the two polygons is less than 1, and for the other it is greater than 1.
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Zhang and Zhou also discussed periodic solutions for planar 2N -body in [8], [9].
In this paper, we continue to study the inverse problem of the theorem (Moeckel-
Simo) for 2N+1-body problem and the following results are established.

Theorem 1. For N ≥ 2, mk, m̃k,m0 > 0, the functions zk(t), z̃k(t) and z̃0(t) with
ω given by (1.5)–(1.7) are solutions of the 2N+1-body problem (1.8)–(1.10), then

(i)

(∑

k

mk

) ∑

j 6=N

(
1

|1− ρj|3 −
ω2

M

)
(1− ρj)

+

(∑

k

m̃k

) ∑

j

(
1

|1− aρjeIθ|3 −
ω2

M

)
(1− aρje

Iθ)

+m0 ·N
(

1− ω2

M

)
= 0 (1.11)

(∑

k

mk

) ∑

j

(
1

|aeIθ − ρj|3 −
ω2

M

)
(aeIθ − ρj)

+

(∑

k

m̃k

) ∑

j 6=N

(
1

|a− aρj|3 −
ω2

M

)
(a− aρj)e

Iθ

+m0 ·N
(

1

a3
− ω2

M

)
aeIθ = 0, (1.12)

(ii) m1 = m2 = · · · = mN and m̃1 = m̃2 = · · · = m̃N . (1.13)

Theorem 2. For N ≥ 2, the functions zk(t), z̃k(t) and z̃0(t) with ω given by
(1.5)–(1.7) are solutions of the 2N+1-body problem (1.8)–(1.10), if and only if the
followings hold

(i) m1 = m2 = · · · = mN := m and m̃1 = m̃2 = · · · = m̃N := m̃, (1.14)

(ii) γ :=
ω2

M
=

1

N + bN + c


 ∑

j 6=N

1− ρj

|1− ρj|3 + b
∑

j

1− aρje
Iθ

|1− aρjeiθ|3 + c


 (1.15)

b =
a3eIθ ∑

j 6=N
1−ρj

|1−ρj |3 − a2 ∑
j

aeIθ−ρj

|aeIθ−ρj |3 + (ca3 − c)eIθ

eIθ(
∑

j 6=N
1−ρj

|1−ρj |3 − a3
∑

j
1−aρjeIθ

|1−aρjeIθ|3 )
, (1.16)

where b = m̃/m, c = m0/m.

Theorem 3. When θ = 0, for the given mass ratio: b = m̃/m 6= 1, and the
arbitrary mass ratio: c = m0/m, there exists two unique solutions in (1.8)–(1.10)
satisfying (1.14) and one such that 0 < a < 1, the other one such that a > 1.

When θ = π/N , for b > 1 there exists a unique solution in (1.8)–(1.10)
satisfying (1.14) and 0 < a < 1, and for 1 > b > 0 there exists a unique solution
such that a > 1.
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Remark. It seems that only θ = 0 or
π

N
, ω2 and a are positive real numbers,

but the proof seems very difficult.

Corollary 1. For N ≥ 2, θ = π/N, a = 1, if the functions zk(t), z̃k(t) and z̃0(t)
with ω given by (1.5)–(1.7) are solutions of the 2N+1-body problem (1.8)–(1.10),
then

(i) b = 1, i.e., m1 = m2 = · · · = mN = m̃1 = m̃2 = · · · = m̃N , (1.17)

(ii) γ :=
ω2

M
=

1

2N + c


1

4

∑

j 6=N

csc
(

πj

2N

)
+ c


 . (1.18)

It is the extension of Theorem 1 (Perko-Walter) [6].

Corollary 2. Under the above assumptions,

(i) if N = 2, θ = 0, a > 1, zk(t), z̃k(t), z̃0(t) with ω given by (1.5)–(1.7) are
solutions of the 2 + 2 + 1-body problems (1.8)–(1.10), if and only If

m1 = m2, m̃1 = m̃2,

ω2

M
=

1

2(1 + b) + c

[
1

4
− 4ab

(a2 − 1)2
+ c

]
(1.19)

and

b =
4c(a3 − 1)(a4 − 2a2 + 1) + (a7 − 2a5 − 8a4 + a3 − 8a2)

17a4 − 2a2 + 1
, (1.20)

hereafter b = m̃1/m1, c = m0/m1.

(ii) If N = 2, θ = 0, 0 < a < 1, zk(t), z̃k(t), z̃0(t) with ω given by (1.5)–(1.7) are
solutions of the 2 + 2 + 1-body problems (1.8)–(1.10), if and only if

m1 = m2, m̃1 = m̃2,

ω2

M
=

1

2(1 + b) + c

[
1

4
+

2b(a2 + 1)

(a2 − 1)2
+ c

]
(1.21)

and

b =
(a7 − 2a5 + 17a3) + 4c(a3 − 1)(a4 − 2a2 + 1)

−8a5 + a4 − 8a3 − 2a2 + 1
. (1.22)

(iii) For N = 2 and θ =
π

2
, b, c and a has the following relationship

b =
2−2 − 2(a2 + 1)−3/2 + c− ca−3

2−2a−3 − 2(a2 + 1)−3/2
. (1.23)
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Remark. When m0 = 0, Corollary 2 is conclusions of MacMillan-Bartky [4] in
some sense.

Corollary 3. Under the above assumptions,

(i) If N = 3, θ = 0, a > 1, zk(t), z̃k(t), z̃0(t) with ω given by (1.5)–(1.7) are
solutions of the 3 + 3 + 1-body problems (1.8)–(1.10), if and only if

m1 = m2 = m3, m̃1 = m̃2 = m̃3,

ω2

M
=

1

3(1 + b) + c

[√
3

3
+

b(2 + a)

(1 + a + a2)
3
2

− b

(a− 1)2
+ c

]
(1.24)

and

b =

[
a2

(
2a + 1

(1 + a + a2)
3
2

+
1

(a− 1)2

)
− a3

√
3

3
− ca3 + c

]

[
a3

(
2a+1

(1 + a + a2)
3
2

− 1
(a−1)2

)
−

√
3

3

] . (1.25)

(ii) If N = 3, θ = 0, 0 < a < 1, zk(t), z̃k(t), z̃0(t) with ω given by (1.5)–(1.7) are
solutions of the 3 + 3 + 1-body problems (1.8)–(1.10), if and only if

m1 = m2 = m3, m̃1 = m̃2 = m̃3,

ω2

M
=

1

3(1 + b) + c

[√
3

3
+

b(2 + a)

(1 + a + a2)
3
2

+
b

(a− 1)2
+ c

]
(1.26)

and

b =

[
a2

(
2a + 1

(1 + a + a2)
3
2

− 1

(a− 1)2

)
− a3

√
3

3
− ca3 + c

]

[
a3

(
2a+1

(1 + a + a2)
3
2

+ 1
(a−1)2

)
−

√
3

3

] . (1.27)

Corollary 4. Under the above assumptions,

(i) If N = 4, θ = 0, a > 1, zk(t), z̃k(t), z̃0(t) with ω given by (1.5)–(1.7) are
solutions of the 4 + 4 + 1-body problems (1.8)–(1.10), if and only if

m1 = · · · = m4, m̃1 = · · · = m̃4,

ω2

M
=

1

4(1 + b) + c

[
1

4
+

√
2

2
+ b

(
2a

(1 + a2)
3
2

− 4a

(a2 − 1)2

)
+ c

]
(1.28)

and

b =

[
a3

(
1

4
+

√
2

2

)
− a2

(
2a

(1 + a2)
3
2

+
2(a2 + 1)

(a2 − 1)2

)
+ ca3 − c

]

[(
1

4
+

√
2

2

)
− a3

(
2

(1 + a2)
3
2

− 4a

(a2 − 1)2

)] . (1.29)
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(ii) If N = 4, θ = 0, 0 < a < 1, zk(t), z̃k(t), z̃0(t) with ω given by (1.5)–(1.7) are
solutions of the 4 + 4 + 1-body problems (1.8)–(1.10), if and only if

m1 = · · · = m4, m̃1 = · · · = m̃4,

ω2

M
=

1

4(1 + b) + c

[
1

4
+

√
2

2
+ b

(
2a

(1 + a2)
3
2

− 2(a2 + 1)

(a2 − 1)2

)
+ c

]
(1.30)

and

b =

[
a3

(
1

4
+

√
2

2

)
− a2

(
2a

(1 + a2)
3
2

− 4a

(a2 − 1)2

)
+ ca3 − c

]

[(
1

4
+

√
2

2

)
− a3

(
2

(1 + a2)
3
2

+
2(a2 + 1))

(a2 − 1)2

)] . (1.31)

2. Some lemmas

Definition 2.1. ([3]) If N ×N matrix A = (ai,j) satisfies

ai,j = ai−1,j−1, 1 ≤ i, j ≤ N, (2.1)

where we assume ai,0 = ai,N and a0,j = aN,j, then we call A is a circular matrix.

Lemma 2.1. ([3])

(i) If A and B are N × N circular matrices, for any numbers α and β, then
A + B, A−B,AB, αA + βB are also circular matrices, and AB = BA.

(ii) Let A = (ai,j) be a N ×N circular matrix, then the eigenvalues λk and the
eigenvectors ~vk of A are

λk(A) =
∑

j

a1,jρ
j−1
k−1, (2.2)

~vk = (1, ρk−1, ρ
2
k−1, ..., ρ

N−1
k−1 )T . (2.3)

(iii) Let A,B be circular matrices, λk(A), λk(B) are eigenvalues of A,B. Then
the eigenvalues of A + B, A−B,A ·B are

λk(A) + λk(B), λk(A)− λk(B), λk(A) · λk(B).

It is clear that

Lemma 2.2. If A = (ai,j) is a N × N circular matrices, and AX = 0, where
X = (x1, ..., xn)T , xi > 0 (i = 1, ..., N), then

a1,j + · · ·+ aN,j = 0, 1 ≤ j ≤ N,

ai,1 + · · ·+ ai,N = 0, 1 ≤ i ≤ N.
(2.4)

Lemma 2.3. Let A,B be N ×N Hermite circular matrices, then A + B, A−B,
AB, αA + βB (α, β ∈ R) are also Hermite circular matrices.

Lemma 2.4. Let A is a Hermite circular matrix, then the eigenvalues of A are
real number.
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(i) When n = 2m + 1(m ≥ 1), A can be denoted with

A = A2m+1 = cir(a, b1, b2, ..., bm, b̄m, ..., b̄2, b̄1),

where a ∈ R and b̄l is a conjugate complex number of bl. It has eigenvalues

λ0 = a + 2
m∑

l=1

Rebl (2.5)

λk = a + 2
m∑

l=1

[
Reblcos

2kπl

2m + 1
− Imblsin

2kπl

2m + 1

]
1 ≤ k ≤ 2m. (2.6)

(ii) When n = 2m(m ≥ 1), A can be denoted with

A = A2m = cir(a, b1, b2, ..., bm−1, bm, b̄m−1, ..., b̄2, b̄1, ).

It has eigenvalues

λ0 = a + 2
m−1∑

l=1

Rebl + bm, (2.7)

λm = a + 2
m−1∑

l=1

(−1)lRebl + (−1)mbm, (2.8)

λk = a + 2
m−1∑

l=1

[
Reblcos

2kπl

2m
− Imblsin

2kπl

2m

]
+ (−1)kbm

1 ≤ k ≤ 2m− 1, k 6= m.

(2.9)

Proof. This lemma can be simply proved by the properties of the circular matrix
and the Hermite matrix.

Lemma 2.5. The complex subspace L of CN generated by X1 = (1, 1, ..., 1),

X2 = (1, ρ, ..., ρN−1), where N = 2k > 2
(
ρ = exp

2πI

N

)
, and the complex sub-

space L̃ generated by X1, X2 and X3 = (1, ρ(k+1), ..., ρ(N−1)(k+1)) where N =
2k + 1 > 3, are all contains no real vectors other than the multiples of (1, 1, ..., 1).

Proof. After some algebraic computation, it can be also simply proved.

Lemma 2.6. ([5]) Let A =
1

4

∑

j 6=N

csc(πj/N), then A(N) has the following asymp-

totic expansion for N large:

A(N) ∼ N

2π

(
γ + log

2N

π

)
+

∑

k≥0

(−1)k(22k−1 − 1)B2
2kπ

2k−1

(2k)(2k)!

1

N2k−1
, (2.10)

where γ stands for the Euler-Mascheroni constant and B2k stands for the Bernoulli
numbers.
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Lemma 2.7. Let Φλ(x) =
∑

j

1

dλ
j

,where λ > 0, dj = 1 + x2 − 2xcos
(

2πj

N
− π

N

)
,

then, for 0 < x < 1, Φλ(x) and all of its any order derivatives are positive.

Moreover, the same is thus for Ψλ(x) =
∑

j

cos
(

2πj
N
− π

N

)

dλ
j

.

Proof. The conclusion and proof are similar to [5].

3. The proof of the main results

For two nested regular polygons, we define

ρk = exp(2πIk/N), (3.1)

ρ̃k = a exp(2πIk/N)eIθ, (3.2)

z0 =
∑

j

(mjρj + m̃j ρ̃j)/M, (3.3)

where

M =
∑

j

(mj + m̃j) + m0, (3.4)

zk(t) = (ρk − z0) exp(Iωt), k = 1, ..., N, (3.5)

z̃k(t) = (aρke
Iθ − z0) exp(Iωt), k = 1, ..., N, (3.6)

and

z̃0(t) = (0− z0) exp(Iωt). (3.7)

Proof of Theorem 1. (3.1)–(3.7) imply that the zk(t) , z̃k(t) and z̃0(t) are the
solutions of (1.8) to (1.10) if and only if

(ρk − z0)ω
2 exp (Iωt)

=


∑

j 6=k

mj
ρk − ρj

|ρk − ρj|3 +
∑

j

m̃j
ρk − ρ̃j

|ρk − ρ̃j|3 + m0
ρk − 0

|ρk|3

 exp (Iωt),

(3.8)

(ρ̃k − z0)ω
2 exp (Iωt)

=


∑

j

mj
ρ̃k − ρj

|ρ̃k − ρj|3 +
∑

j 6=k

m̃j
ρ̃k − ρ̃j

|ρ̃k − ρ̃j|3 + m0
ρ̃k − 0

|ρ̃k|3

 exp (Iωt)

(3.9)

and
(0− z0)ω

2 exp (Iωt)

=


∑

j 6=k

mj
0− ρj

|0− ρj|3 +
∑

j

m̃j
0− ρ̃j

|0− ρ̃j|3

 exp (Iωt),

(3.10)
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or if and only if

∑

j 6=k

mj

(
1

|ρk − ρj|3 −
ω2

M

)
(ρk − ρj)

+
∑

j

m̃j

(
1

|ρk − ρ̃j|3 −
ω2

M

)
(ρk − ρ̃j) + m0

(
1− ω2

M

)
ρk = 0,

(3.11)

∑

j

mj

(
1

|ρ̃k − ρj|3 −
ω2

M

)
(ρ̃k − ρj)

+
∑

j 6=k

m̃j

(
1

|ρ̃k − ρ̃j|3 −
ω2

M

)
(ρ̃k − ρ̃j) + m0

(
1

a3
− ω2

M

)
aρk = 0

(3.12)

and

z0ω
2 =


∑

j 6=k

mj
ρj

|ρj|3 +
∑

j

m̃j
ρ̃j

|ρ̃j|3

 . (3.13)

Multiplying both sides by ρN−k in (3.11), (3.12), noting that |ρk − ρj| =
|ρk||1− ρj−k| = |1− ρj−k| and using ρ̃k = aρke

Iθ, we have

∑

j 6=k

mj

(
1

|1− ρj−k|3 −
ω2

M

)
(1− ρj−k)

+
∑

j

m̃j

(
1

|1− aρj−keIθ|3 −
ω2

M

)
(1− aρj−ke

Iθ) + m0(1− ω2

M
) = 0,

(3.14)

∑

j

mj

(
1

|aeIθ − ρj−k|3 −
ω2

M

)
(aeIθ − ρj−k)

+
∑

j 6=k

m̃j

(
1

|a− aρj−k|3 −
ω2

M

)
(a− aρj−k)e

Iθ + m0(
1

a3
− ω2

M
)aeIθ = 0

(3.15)

and

z0ω
2 =


∑

j 6=k

mj
ρj

|ρj|3 +
∑

j

m̃j
ρ̃j

|ρ̃j|3

 . (3.16)

Notice that every step from (3.8) to (3.16) can be conversed respectively, firstly
we discuss (3.14)–(3.16). Now define the N × N circular matrices A = [ak,j],
B = [bk,j], C = [ck,j], D = [dk,j] as follows:

ak,j = 0, for k = j,

ak,j =

(
1

|1− ρj−k|3 −
ω2

M

)
(1− ρj−k), for k 6= j, (3.17)

bk,j =

(
1

|aeIθ − ρj−k|3 −
ω2

M

)
(aeIθ − ρj−k), (3.18)

ck,j =

(
1

|1− aρj−keIθ|3 −
ω2

M

)
(1− aρj−ke

Iθ), (3.19)
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dk,j = 0, for k = j,

dk,j =

(
1

|a− aρj−k|3 −
ω2

M

)
(a− aρj−k)e

Iθ for k 6= j, (3.20)

~1 = (1, ..., 1)T , (3.21)

E = (1− ω2

M
) ·~1, (3.22)

F = aeIθ(
1

a3
− ω2

M
) ·~1. (3.23)

Then (3.14) and (3.15) hold if and only if the matrix equation

(
A C E
B D F

)




m1
...

mN

m̃1
...

m̃N

m0




= 0 (3.24)

has a positive solution.
Let

~m = (m1, ..., mN)T , ~̃m = (m̃1, ..., m̃N)T , (3.25)

then (3.24) is equivalent to

A~m + C ~̃m + Em0 = ~0, (3.26)

B~m + D~̃m + Fm0 = 0. (3.27)

Notice that A,B, C,D are N×N circular matrices, with the properties of circular
matrix we know they must have positive real eigenvector ~1. Each of (3.26), (3.27)
left multiplies ~1T = (1, 1, ..., 1), there are

(∑

k

mk

) ∑

j 6=N

(
1

|1− ρj|3 −
ω2

M

)
(1− ρj)

+

(∑

k

m̃k

) ∑

j

(
1

|1− aρjeIθ|3 −
ω2

M

)
(1− aρje

Iθ)

+m0 ·N
(

1− ω2

M

)
= 0,

(3.28)

and (∑

k

mk

) ∑

j

(
1

|aeIθ − ρj|3 −
ω2

M

)
(aeIθ − ρj)

+

(∑

k

m̃k

) ∑

j 6=N

(
1

|a− aρj|3 −
ω2

M

)
(a− aρj)e

Iθ

+m0 ·N
(

1

a3
− ω2

M

)
aeIθ = 0.

(3.29)
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The conclusion (i) of Theorem 1 is proved.

(ii) By (3.26) and (3.27) we have

(AD − CB)~m + m0

[(
1− ω2

M

)
D − aeIθ

(
1

a3
− ω2

M

)
C

]
~1 = ~0, (3.30)

(CB − AD) ~̃m + m0

[(
1− ω2

M

)
B − aeIθ

(
1

a3
− ω2

M

)
A

]
~1 = ~0. (3.31)

From Lemma 2.1 we see that
(

1− ω2

M

)
D − aeIθ

(
1

a3
− ω2

M

)
C,

(
1− ω2

M

)
B − aeIθ

(
1

a3
− ω2

M

)
A

and AD−CB are circular matrices, we know they must have positive real eigen-
vector ~1. Using the properties of circular matrix, (3.30), (3.31) can be written as

(AD − CB) · ~m + α1 ·~1 = ~0, (3.32)

(CB − AD) · ~̃m + α2 ·~1 = ~0, (3.33)

where

α1 ·~1 = m0

[(
1− ω2

M

)
D − aeIθ

(
1

a3
− ω2

M

)
C

]
·~1, (3.34)

α2 ·~1 = m0

[(
1− ω2

M

)
B − aeIθ

(
1

a3
− ω2

M

)
A

]
·~1, (3.35)

α1 = m0




(
1− ω2

M

) ∑

j 6=N

(
1

|a− aρj|3 −
ω2

M

)
(a− aρj)e

Iθ (3.36)

−aeIθ

(
1

a3
− ω2

M

) ∑

j

(
1

|1− aρjeIθ|3 −
ω2

M

)
(1− aρje

Iθ)


 ,

α2 = m0




(
1− ω2

M

) ∑

j

(
1

|aeiθ − ρj|3 −
ω2

M

)
(aeIθ − ρj) (3.37)

−aeIθ

(
1

a3
− ω2

M

) ∑

j 6=N

(
1

|1− ρj|3 −
ω2

M

)
(1− ρj)


 .

From (3.28), (3.29), we have

α1

∑

k

m̃k + α2

∑

k

mk = 0. (3.38)

a. If α1 = 0, then α2 = 0 and

(AD − CB) · ~m = ~0, (3.39)
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(AD − CB) · ~̃m = ~0. (3.40)

(3.39), (3.40) must have positive real solutions, i.e., the kernel K of circular matrix
AD − CB has positive vector(s).

By Lemmas 2.1, 2.2 we have the eigenvalue

λk(AD − CB) = λk(AD)− λk(CB) = λk(A)λk(D)− λk(C)λk(B). (3.41)

Hence,
λk(AD − CB) = 0 (3.42)

for some 1 ≤ k ≤ N if and only if

λk(A)λk(D) = λk(B)λk(C) (3.43)

Since

∑

j 6=N

(
1

|1− ρj|3 −
ω2

M

)
(1− ρj)

∑

j 6=N

(
1

|a− aρj|3 −
ω2

M

)
(a− aρj)e

Iθ

=
∑

j

(
1

|1−aρjeiθ|3 −
ω2

M

)
(1−aρje

Iθ)
∑

j

(
1

|aeIθ−ρj|3 −
ω2

M

)
(aeIθ−ρj)

(3.44)

by (3.36), (3.37), we see λ1(AD − CB) = 0 and ~v1 = (1, 1, ..., 1)T ∈ K. We know

A,B, C, D and AD − CB are all Hermite matrices when θ = 0(a 6= 1),
π

N
. In

this case, by Lemma 2.4 , 2.5 and [7], after many complex calculations it implies
that the kernel K ⊆ L or ⊆ L̃ only contains such positive vectors as multiples of
v1 = (1, 1, ..., 1)T . In a general way we shall obtain similar conclusion. Hence,

m1 = m2 = · · · = mN := m m > 0, (3.45)

m̃1 = m̃2 = · · · = m̃N := m̃ m̃ > 0. (3.46)

b. If α1 6= 0 then α2 6= 0. From (3.32), (3.33), (3.38), we get

(CB − AD)

[(∑

k

mk

)
~̃m−

(∑

k

m̃k

)
~m

]
= ~0. (3.47)

If (∑

k

mk

)
~̃m−

(∑

k

m̃k

)
~m = ~0, (3.48)

then m̃j = bmj, where b =
∑

k

m̃k/
∑

k

mk. Substitute it into (3.26) and (3.27).

Similar to the proof in a, we also have (3.45) and (3.46).
If (∑

k

mk

)
~̃m−

(∑

k

m̃k

)
~m 6= ~0, (3.49)

let G = CB − AD = (gij), which is nonzero circular matrix, by Lemma 2.1 and
2.2, we have

∑

j

gij =
∑

i

gij = 0 and G has eigenvalue 0. Using the properties of
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circular matrix, we have (AD − CB)~1 = ~0 or ~1T (AD − CB) = ~0T . Let ~1T left
multiplies (3.32) and (3.33) respectively, we get α1 = α2 = 0, which contradicts
the supposition. So (3.48) holds. Hence, Theorem 1 is accomplished.

Proof of Theorem 2.

Proof of the Necessary. From Theorem 1, (1.14) holds. We only prove (1.15),
(1.16).

Let m̃ = bm,m0 = cm, from (3.28), (3.29), there are


 ∑

j 6=N

(
1

|1− ρj|3 −
ω2

M

)
(1− ρj)

+b
∑

j

(
1

|1− aρjeIθ|3 −
ω2

M

)
(1− aρje

Iθ)


 + c

(
1− ω2

M

)
= 0

(3.50)


∑

j

(
1

|aeIθ − ρj|3 −
ω2

M

)
(aeIθ − ρj)

+b
∑

j 6=N

(
1

|a− aρj|3 −
ω2

M

)
(a− aρj)e

Iθ


 + c

(
1

a3
− ω2

M

)
aeIθ = 0.

(3.51)

We know ∑

j

(1− ρj) = N, (3.52)

∑

j

b(1− aρje
Iθ) = bN, (3.53)

∑

j

(aeIθ − ρj) = aNeIθ, (3.54)

∑

j

b(aeIθ − aρj) = abNeIθ. (3.55)

By (3.50) and (3.51) there are

ω2

M


∑

j

(1− ρj) + b
∑

j

(1− aρje
Iθ) + c




=
∑

j 6=N

1− ρj

|1− ρj|3 + b
∑

j

1− aρje
Iθ

|1− aρjeIθ|3 + c,

(3.56)

ω2

M


∑

j

(aeIθ − ρj) + b
∑

j

(a− aρj)e
Iθ + caeIθ




=
∑

j

aeIθ − ρj

|aeIθ − ρj|3 + b
∑

j 6=N

a− aρj

|a− aρj|3 eIθ +
c

a2
eIθ,

(3.57)
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and we have

γ :=
ω2

M
=

1

N + bN + c


 ∑

j 6=N

1− ρj

|1− ρj|3 + b
∑

j

1− aρje
Iθ

|1− aρjeIθ|3 + c


 , (3.58)

γ:=
ω2

M
=

1

aeIθ(N+bN+c)


∑

j

aeIθ−ρj

|aeIθ−ρj|3 +b
∑

j 6=N

a−aρj

|a−aρj|3 eIθ+
c

a2
eIθ


 . (3.59)

Then

aeIθ


 ∑

j 6=N

1− ρj

|1− ρj|3 + b
∑

j

1− aρje
Iθ

|1− aρjeIθ|3 + c




=
∑

j

aeIθ − ρj

|aeIθ − ρj|3 + b
∑

j 6=N

a− aρj

|a− aρj|3 eIθ +
c

a2
eIθ,

(3.60)

and that

b =
aeIθ ∑

j 6=N
1−ρj

|1−ρj |3 −
∑

j
aeIθ−ρj

|aeIθ−ρj |3 + (ca− c
a2 )e

Iθ

eIθ(
∑

j 6=N
a−aρj

|a−aρj |3 − a
∑

j
1−aρjeIθ

|1−aρjeIθ|3 )
, (3.61)

i.e.

b =
a3eIθ ∑

j 6=N
1−ρj

|1−ρj |3 − a2 ∑
j

aeIθ−ρj

|aeIθ−ρj |3 + (ca3 − c)eIθ

eIθ(
∑

j 6=N
1−ρj

|1−ρj |3 − a3
∑

j
1−aρjeIθ

|1−aρjeIθ|3 )
. (3.62)

Namely (1.15) and (1.16) hold.

The proof of the Sufficiency. For N ≥ 2, the functions zk(t), z̃k(t) and z̃0(t)
with ω given by (1.5) to (1.7) are solutions of the 2N+1-body problem (1.8)–
(1.10), if and only if (3.8) to (3.10), or (3.11) to (3.13) have positive solutions.
Let

m1 = m2 = · · · = mN := m m > 0, (3.63)

m̃1 = m̃2 = · · · = m̃N := m̃ m̃ > 0, (3.64)

where m̃ = bm,m0 = cm, then (3.13) holds, (3.11)–(3.12) or (3.14)–(3.15) are
equivalence to (3.56) and (3.57). From the process of the necessary proof for
theorem 2, we know that (3.56) and (3.57) are equivalence to (3.58) and (3.62),
i.e. equivalence to (1.15)–(1.16). Hence the proof of the sufficiency is finished.

Proof of Theorem 3. Under the assumption of the Theorem 3, we know that the
uniqueness of the periodic solution (1.5) to (1.7) or (1.8) to (1.10) is equivalence
to that (1.15)–(1.16) or (3.58), (3.59) have a unique positive solution for 0 < a < 1
or a > 1. We only prove the case of θ = π/N . Obviously, when θ = π/N the right
sides of (3.58)–(3.59) are positive. So the problem is that the following equation
has a positive solution ”a” (0 < a < 1 or a ≥ 1) for given positive numbers b, c.

a


 ∑

j 6=N

1− ρj

|1− ρj|3 + b
∑

j

1− aρje
I π

N

|1− aρje
I π

N |3 + c




− =
∑

j

a− ρje
−I π

N

|a− ρje
−I π

N |3 + b
∑

j 6=N

a− aρj

|a− aρj|3 +
c

a2
·

(3.65)
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Let a = x,

f(x) = x


 ∑

j 6=N

1− ρj

|1− ρj|3 + b
∑

j

1− xρje
I π

N

|1− xρje
I π

N |3 + c




−∑

j

x− ρje
−I π

N

|x− ρje
−I π

N |3 − b
∑

j 6=N

x− xρj

|x− xρj|3 −
c

x2
.

(3.66)

We need to prove f(x) has a unique zero for 0 < x < 1 or for x ≥ 1. Let

d2
j = 1 + x2 − 2xcos

π

N
(2j − 1), (3.67)

α(x) =
∑

j

1

d3
j

, (3.68)

β(x) =
∑

j

cos π
N

(2j − 1)

d3
j

, (3.69)

ξ =
∑

j 6=N

1− ρj

|1− ρj|3 =





1

4
(2

N
2
−1∑

j=1

csc
(

πj

N
) + 1

)
, when N is even

1

2

N−1
2∑

j=1

csc
(

πj

N

)
, when N is odd.

(3.70)

Then
lim

x→0+
f(x) = −∞ (3.71)

lim
x→1−

f(x) =
∑

j 6=N

1− ρj

|1− ρj|3 + b
∑

j

1− ρje
I π

N

|1− ρje
I π

N |3

−∑

j

1− ρje
−I π

N

|1− ρje
−I π

N |3 − b
∑

j 6=N

1− ρj

|1− ρj|3

= (b− 1)


∑

j

1− ρje
−I π

N

|1− ρje
−i π

N |3 −
∑

j 6=N

1− ρj

|1− ρj|3

 .

(3.72)

But

η=
∑

j 6=N

1−ρje
−I π

N

|1−ρje
−I π

N |3 =





1

4


2

N
2
−1∑

j=1

csc
(

πj

N
− π

2N

)
+1


, when N is even

1

2

N−1
2∑

j=1

csc
(

πj

N
− π

2N

)
, when N is odd.

(3.73)

Since, when N ≥ 2 is even

∑

j

1− ρje
−I π

N

|1− ρje
−I π

N |3 −
∑

j 6=N

1− ρj

|1− ρj|3

=
1

2

N
2
−1∑

j=1

[
csc

(
πj

N
− π

2N

)
− csc

(
πj

N

)]
+

1

2

(
csc

π

2N
+ 1

)
> 0,

(3.74)
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and when N ≥ 2 is odd, also

∑

j

1− ρje
−I π

N

|1− ρje
−I π

N |3 −
∑

j 6=N

1− ρj

|1− ρj|3

=
1

2

N−1
2∑

j=1

[
csc

(
πj

N
− π

2N

)
− csc

(
πj

N

)]
+

1

4
> 0.

(3.75)

Hence, when b > 1, we have
lim

x→1−
f(x) > 0. (3.76)

Obviously f(x) is a continue function for 0 < x < 1. Thus, to prove the existence
of unique zero of f(x), it suffices to show that f(x) is increasing. Now f(x) can
be written as follow:

f(x) =

(
x− b

x2

)
ξ + bx(α(x)− xβ(x)) + (β(x)− xα(x)) + c

(
x− 1

x2

)
. (3.77)

Let

Φ(x) =
∑

j

1

dj

. (3.78)

It follows from the definitions that

Φ(x) = (1 + x2)α(x)− 2xβ(x), (3.79)

and it implies
α(x)− xβ(x) = α(x) + x(β(x)− xα(x)). (3.80)

Since
dΦ

dx
= α(x)− xβ(x), (3.81)

then, also f(x) can be written as

f(x) =

(
x− b

x2

)
ξ + bxΦ(x) + (1 + bx2)

dΦ

dx
+ c

(
x− 1

x2

)
. (3.82)

From Lemma 2.3, the first and the final terms are clearly increasing. Using Lemma

2.4 and its proof, we know Φ(x),
dΦ

dx
themselves and their derivatives are positive

for 0 < x < 1. But
[
bxΦ(x) + (1 + bx2)

dΦ

dx

]′
= bΦ(x) + 3bx

dΦ

dx
+ (1 + bx2)

d2Φ

dx2
, (3.83)

so [
bxΦ(x) + (1 + bx2)

dΦ

dx

]′
> 0, for 0 < x < 1. (3.84)

Hence, the other two terms are increasing too for 0 < x < 1, i.e. f(x) = 0 has a
unique solution for 0 < x < 1 when b > 1.
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Let the solution of f(x)=0 for 0 < x < 1 is xproblem(b) := xp(b), 0 < xp(b) < 1.
For the case of x > 1: we don’t directly discuss the equation f(x) = 0. Similarly
we have a corresponding equation. By the symmetry of the problem, we have the

solution x̃problem(b) := x̃p(b) s.t. x̃p(b) =
1

xp

(
1

b

) > 1.

Remark. It implies for b > 1, then 0 < a < 1; for 0 < b < 1, then a > 1; and for
b = 1, θ = π/N , then a = 1.

Proof of Corollary 1. By Theorem 2, we easily prove Corollary 1.

Proof of Corollary 2. We only prove (iii), when N = 2, θ = π/2,

a3eIθ
∑

j 6=N

1− ρj

|1− ρj|3 − a2
∑

j

aeIθ − ρj

|aeIθ − ρj|3 + (ca3 − c)eIθ

= a2(
2aI

8
− aI − 1

(a2 + 1)3/2
− aI + 1

(a2 + 1)3/2
) + (ca3 − c)I

= a2(
2aI

8
− 2aI

(a2 + 1)3/2
) + (ca3 − c)I

= 2a3I

(
1

8
− 1

(a2 + 1)3/2

)
+ (ca3 − c)I

(3.85)

and

eIθ


 ∑

j 6=N

1− ρj

|1− ρj|3 − a3
∑

j

1− aρje
Iθ

|1− aρjeIθ|3



= I

(
1 + 1

23
− a3

(
1− aI

|1− aI|3 +
1− a(−1)I

|1− a(−1)I|3
))

= 2a3I

(
1

8a3
− 1

(a2 + 1)3/2

)
.

(3.86)

So

b =
a3eIθ ∑

j 6=N
1−ρj

|1−ρj |3 − a2 ∑
j

aeIθ−ρj

|aeIθ−ρj |3 + (ca3 − c)eIθ

eIθ(
∑

j 6=N
1−ρj

|1−ρj |3 − a3
∑

j
1−aρjeIθ

|1−aρjeIθ|3 )

=
2−2 − 2(a2 + 1)−3/2 + c− ca−3

2−2a−3 − 2(a2 + 1)−3/2
.

(3.87)

We omit other proofs.
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